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ABSTRACT

Recently developed Dual Domain Image Denoising (DDID)
algorithm is a simple version of block-matching 3D filtering
(BM3D) by combining bilateral filter and frequency-based
method. DDID and its invariants have achieved competitive
results compared with state-of-the-art methods. However,
this kind of methods share a common drawback: there are
a few parameters of the algorithms that are data- and noise-
dependent, and difficult to tune. In this paper, we propose
to use Stein’s unbiased risk estimate (SURE) to measure the
mean square error (MSE) of the DDID algorithm for restora-
tion of an image contaminated with additive white Gaussian
noise. We derive an explicit expression for SURE value to
optimize parameters without access to the noise-free signal.
Experimental results demonstrate the effectiveness of the
proposed parameter selection in term of both quantitative and
qualitative metrics.

Index Terms— Image denoising, Dual domain, Stein’s
unbiased risk estimate

1. INTRODUCTION

Image denoising is a fundamental problem in the filed of im-
age processing and computer vision community [1, 2, 3, 4].
In general, image denoising methods can be classified as spa-
tial domain methods, transform domain methods, or hybrid
spatial-transform methods.

Spatial domain methods utilize various image prior
knowledge of spatial structure, such as local correlation (e.g.,
bilateral filter [5]), sparse representation (e.g., group sparsity
[6]), and nonlocal self-similarity (e.g., non-local means filter
[7]). This type of methods have tendency to remove low con-
trast details, and thus often over-smooth image contents. On
the contrary, transform domain methods excel in preserving
details like textures. This kind of methods can remove the
noise effectively by thresholding coefficients in transform
domain, which based on the assumption that images can be
sparsely represented by orthonormal basis (e.g., wavelets
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(a) σ = 30,Cameraman (b) 31.74 dB, (100, 4.0) (c) 31.83 dB, (80, 4.5)

(d) σ = 50, Peppers (e) 28.46 dB, (100, 4.0) (f) 28.54 dB, (100, 6.7)

Fig. 1. Denoised results of DDID with fixed parameters
(the second column) and with optimal parameters selected by
SURE optimization (the third column) for Cameraman and
Peppers.

[8]). The transform based methods have the advantages of
efficiency, but they often suffer from ringing artifacts near
edges.

More advanced methods take advantage of both spatial
and transform domain methods [9, 10, 11, 12]. Among
them, block-matching and 3D (BM3D) [9] and BM3D-
SAPCA [11] obtain remarkable results by combining non-
local self-similarity and transform domain methods. Most
recently, more efficient alternatives to the complex BM3D,
like dual domain image denoising (DDID) [13] and its vari-
ants [14, 13, 15, 16], have been proposed. Such DDID based
methods combine the simple bilateral filter and frequency-
based methods in an iterative fashion, and provide denoising
results generally superior to BM3D.

A remaining question of the original DDID algorithm
is how to tune the parameters of the algorithm—the range
parameter γr, and the wavelet shrinkage parameter γf , which
are data-dependent and noise-dependent, thus resulting in
their difficulty to tune. However, the original DDID adopt
fixed parameters without considering image content and noise
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levels. For example, as shown in Fig. 1, the denoised results
of DDID show that it does not produce satisfying results
(e.g., ringing artifacts around edges) with the fixed parame-
ters, while DDID with our SURE-based adaptive parameters
obtains much better performance. Thus, the original DDID is
sensitive to the choice of the parameters.

Contribution. To overcome this issue, in this paper, we
propose to adopt the Stein’s unbiased risk estimate (SURE)
[17] as an unbiased estimator of the mean square error (MSE)
of the DDID algorithm for denoising an image contaminated
with additive white Gaussian noise. Our contributions can
be summarized as: 1) We explore the role of the parameters
γr and γf for the DIDD algorithm, and demonstrate that the
optimal parameters are data-dependent and noise-dependent;
2) We derive an analytical expression for SURE that deter-
mines the optimal parameters by minimizing the SURE cost;
3) Experimental results not only confirm the optimality of the
proposed parameter selection, but also reduce lots of artifacts
comparing to the original DDID.

2. PRELIMINARIES

2.1. Stein’s Unbiased Risk Estimate

Given anN -dimension noise-free image x contaminated with
additive white Gaussian noise n with ni ∼ N (0, σ2), where
σ2 is the variance of noise, and then the noisy image y is ex-
pressed as: y = x+n. In image denoising task, mean square
error (MSE) is computed between denoised image x̂ and its
reference image (clean image) to evaluate the performance of
the denoised method. However, the reference image is often
not available in practice. In [17], the principle of Stein’s unbi-
ased risk estimate (SURE) as an estimator for the MSE from
the noisy image only was proposed. Specifically, SURE can
be formulated as:

SURE =
1

N
||y − x̂||2 − σ2 + 2σ2 divy{x̂}

N
, (1)

where divy{x̂} denotes the divergence of the denoising
method with respect to the measurements

divy{x̂} =
∑
i∈I

∂x̂i
∂yi

. (2)

Note that using the SURE principle for optimal parameter
selection has received much attention in different denoising
methods for Gaussian distribution [18, 19, 20] and non-
Gaussian distributions [21].

2.2. Dual Domain Image Denoising

DDID was first proposed by Knaus et al. in [12], including
three nearly the same iterations. The basic idea of DDID is to
split the images into high-contrast and low-contrast signals,
which are processed by the bilateral filter and wavelet shrink-
age method, respectively. The final denoised image x̂ can

thus be the sum of two denoised layers: x̂ = x̂l + x̂h, where
x̂l and x̂h denote the denoised results of low-contrast signals
and high-contrast signals.

To filter a pixel centered at p from the noisy image y, the
first step of DDID extracts a patch Np centered at p. The ex-
tracted patches are then processed by the bilateral filter, thus
obtaining the denoised high-contrast value x̂hp :

x̂hp =

∑
q∈Np

kqyq∑
q∈Np

kq
, (3)

where the weight function k is

kq = exp

(
−|yq − yp|

2

γrσ2

)
exp

(
−||q − p||

2

2σ2
s

)
, (4)

and the parameters σs and γr control the decay of the expo-
nential function; σ is the standard deviation of the noise. The
first term in k identifies the pixels with similar structure to
the center pixel, while the second term in k eliminates the pe-
riodization discontinuities with respect to a discrete Fourier
transform (DFT).

After processing the high-contrast signals by the bilateral
filter, we then obtain the low-contrast signals by subtracting
the bilaterally filtered high-contrast values x̂hp , i.e., xlp = yp−
x̂hp . Subsequently, wavelet shrinkage is used in the Fourier
domain to remove the noise, thus yielding the denoised low-
contrast value as follows:

x̂lp =
1

r2

∑
f∈NF

KfFf , (5)

where NF denotes the frequency domain (with size r × r),
F = Fp[kqx

l
q] denotes the frequency coefficients in NF ,

and Fp[·] means the DFT operation of the signals withinNp;
Kf is the corresponding the wavelet shrinkage factor: Kf =

exp (− γfσ
2
f

|Ff |2 ), where σ2
f represents the variance of the noisy

frequency coefficients inNF , and γf is the wavelet shrinkage
parameter. Thus, the final denoised value centered at p is the
sum of the denoised low-contrast and high-contrast values:

x̂p = x̂lp + x̂hp . (6)

The first step of DDID consists of the above processes re-
peated for each pixel of the image. Then the complete DDID
algorithm repeats similar step three times with different pa-
rameters. For second and third step, the denoised result of the
previous iteration is applied as a guide image, and please refer
to [12, 15] to get more details about DDID.

3. SURE-BASED DDID

3.1. The analysis of the parameters in DDID

The above description shows that there exist two main param-
eters γr and γf in DDID. In this section, we will give some
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analysis about the role of the parameters. As shown in Fig. 1,
it can be seen that without proper parameter settings, DDID
has a tendency to produce the annoying ringing artifacts in
the denoised results. Thus, DDID is sensitive to the choice
of γr and γf . To further see the effect of varying parameters,
we plot the true MSE of DDID on various images and noise
levels as a function of γr and γf in Fig. 2, which indicates
that the optimal parameters are related to image contents and
noise levels. These observations inspire us to propose a strat-
egy to obtain the optimal parameters adaptively.

To obtain the optimal parameters, we use the SURE prin-
ciple to monitor the MSE without access to noise-free images.
The optimal parameters can be determined by minimizing the
SURE cost. To compute the SURE, we derive an analytical
expression, which will be shown in the following sections.

3.2. The derivation of SURE for DDID

As shown in Equ. (1), the divergence term in Equ. (2) plays
a key role in the expression of SURE. From Equ. (6), we can
see that the denoised value of DDID consists of two parts, i.e.,
the denoised high-contrast value x̂hp and low contrast value
x̂lp. Thus, the divergence term can be computed as:

∂x̂p
∂yp

=
∂x̂hp
∂yp

+
∂x̂lp
∂yp

, (7)

which is shown in the following two Propositions.

Proposition 1 (Divergence of the high-contrast part x̂hp ):

The divergence of the high-contrast part x̂hp is given by:

∂x̂hp
∂yp

=

∑
q∈Np

kqy
2
q

1
2γrσ

2Wp

+
1

Wp
−

(x̂hp)
2

1
2γrσ

2
, (8)

where Wp =
∑
q∈Np

kq .

Proposition 2 (Divergence of the low-contrast part x̂lp):

The second part x̂lp is the denoised low-contrast signals by
using wavelet shrinkage in the Fourier domain, as shown in
Equ. (5). After some computation and simplification, the di-
vergence of the low-contrast signals can be expressed as:
∂x̂lp
∂yp

=

1

r2

∑
f∈NF

Kf

[
γf

|Ff |2Ff
(
4|Ff |2

γr
Vp+σ

2A
∑
q∈Np

k2q)+
∂Ff
∂yp

]
,

(9)

where Vp =
∑
q∈Np

k2q(yp − yq), A =
∂Ff

∂yp
Ff + Ff

∂Ff

∂yp
,

∂Ff
∂yp

=


Fp

[
kp

(
2(yq − yp)(yq − x̂lp)

γrσ2
−
∂x̂lp
∂yp

)]
, p 6= q

Fp

[
1−

∂x̂lp
∂yp

]
, p = q

where Fp[·] means the DFT operation of the elements in Np.

Proposition 3 (SURE for DDID):

The parameter γf and γr are in Equ. (8) and Equ. (9). Then
SURE-based optimization for the parameters can be formu-
lated by substituting Equ. (7), (8), and (9) into Equ. (1)

SURE(γr,γf ) =
||y − x̂||2

N
− σ2 +

2σ2

N

N∑
p

(
∂x̂hp
∂yp

+
∂x̂lp
∂yp

).

Then the choice of the optimal parameters is equivalent to the
following optimization problem as:

(γr, γf ) = argmin
γr,γf

SURE(γr,γf ). (10)

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

To test the performance of the proposed SURE-based DDID
comprehensively, extensive experiments are performed on
multiple test images from the standard image database. All
the results are evaluated with PSNR and Structural Similarity
index (SSIM) [22]. Each image is contaminated with AWGN
with different amounts of noise, and we report the typical
results (σ = 30, 50, 70, 100).
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Fig. 2. Performance measures (true MSE (in blue), SURE (in
red) for exact σ) as a function of the γr or γf . The optimal set-
ting γr or γf for each measure is indicated by a vertical line in
the same drawing style. The first and and second rows denote
γr and γf with Cameraman (Cam.) and Montage (Mon.).

The first step of original DDID is parametrized by three
parameters namely σs, γr, and γf , which are set to fixed con-
stants in practice. In our experiments, we observe that the
performance of DDID is not sensitive to the choice of σs, and
thus we set the parameter σs to 7 as in DDID for a fair com-
parison. To test the influence of varying parameters γr and
γf , we plot the true MSE of DDID on various images and
noise levels as a function of the γr and γf . The parameter γr
was ranged from 10 to 300 in steps of 10, and γf from 1 to 10
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Table 1. Performance of DDID, and our method, and BM3D on various images and σ. The best results are highlighted in bold.

σ
Cameraman House Montage Couple

DDID Ours BM3D DDID Ours BM3D DDID Ours BM3D DDID Ours BM3D

30 28.58 28.65(+0.07) 28.64 31.74 31.83(+0.09) 32.03 31.33 31.49(+0.17) 31.37 28.61 28.65(+0.05) 28.87
0.823 0.832(+0.009) 0.830 0.841 0.847(+0.006) 0.849 0.906 0.916(+0.010) 0.908 0.882 0.893(+0.011) 0.891

50 26.22 26.26(+0.04) 26.12 29.11 29.35(+0.24) 29.64 28.22 28.41(+0.20) 27.90 26.28 26.37(+0.090) 26.46
0.757 0.764(+0.007) 0.775 0.798 0.815(+0.017) 0.813 0.854 0.863(+0.009) 0.857 0.804 0.818(+0.014) 0.815

70 24.57 24.80(+0.23) 24.61 27.23 27.63(+0.40) 27.84 26.14 26.58(+0.44) 25.92 24.76 24.79(+0.03) 25.00
0.714 0.736(+0.022) 0.735 0.744 0.777(+0.033) 0.782 0.803 0.824(+0.021) 0.803 0.731 0.726(-0.005) 0.749

100 22.68 22.95(+0.27) 23.07 25.34 25.79(+0.44) 25.99 23.50 23.95(+0.45) 23.88 23.25 23.30(+0.05) 23.51
0.650 0.687(+0.037) 0.687 0.692 0.737(+0.045) 0.741 0.733 0.778(+0.045) 0.744 0.640 0.634(-0.006) 0.662

σ
Peppers Lena Barbara Man

DDID Ours BM3D DDID Ours BM3D DDID Ours BM3D DDID Ours BM3D

30 29.35 29.44(+0.08) 29.28 31.36 31.27(-0.09) 31.26 29.91 29.83(-0.08) 29.81 28.73 28.78(+0.05) 28.86
0.848 0.855(+0.007) 0.852 0.919 0.917(-0.002) 0.912 0.930 0.931(+0.001) 0.927 0.868 0.869(+0.001) 0.875

50 26.89 26.96(+0.07) 26.68 29.02 29.03(+0.01) 29.05 27.40 27.35(-0.05) 27.22 26.64 26.75(+0.11) 26.81
0.789 0.792(+0.003) 0.794 0.870 0.870(+0.000) 0.867 0.883 0.886(+0.003) 0.872 0.788 0.804(+0.016) 0.801

70 25.07 25.31(+0.24) 25.06 27.39 27.52(+0.12) 27.57 25.70 25.73(+0.03) 25.47 25.32 25.48(+0.16) 25.56
0.735 0.754(+0.019) 0.744 0.829 0.828(-0.001) 0.825 0.829 0.832(+0.003) 0.814 0.733 0.729(-0.004) 0.747

100 23.13 23.45(+0.33) 23.39 25.68 25.97(+0.28) 25.95 23.83 23.93(+0.10) 23.62 23.94 24.22(+0.28) 24.22
0.678 0.710(+0.032) 0.683 0.770 0.777(+0.007) 0.768 0.756 0.762(+0.006) 0.738 0.661 0.663(+0.003) 0.678

in steps of 0.2. The optimal parameters for MSE and SURE
for different images are shown in Fig. 2, from which we can
have some observations: 1) The performance of DDID is sen-
sitive the choice of the parameters; 2) The optimal parameters
are related to image contents and noise levels. 3)The SURE
approximates the MSE accurately and the optimal parameters
obtained by SURE minimization is nearly the same as that by
the true MSE.

4.2. Quantitative and qualitative analysis

As mentioned in section 2.2, a complete DDID algorithm is
made up of three steps. In the second and third step of DDID,
as most of the noise has already been removed, we set γr and
γf to constant values empirically for simplicity. Specifically,
we set {γr, γf} = {0.7, 0.4} and {γr, γf} = {0.3, 0.7} for
the second and third step, respectively. In the case of color
image, we filter in RGB space and our method is implemented
in three channels independently.

The proposed method has been compared against the orig-
inal DDID [12], and the advanced BM3D [9]. The parameters
of these comparing methods are set in default values. PSNR
and SSIM results are summarized in Table 1, from which we
can see that our method obtains the best results in most cases.
Specifically, the performance gain of our method over DDID
increases with increasing noise levels, and the largest PSNR
gain is up to 0.45 dB.

We also show the denoised results of different methods in
Fig. 1 and Fig. 3, from which we can see that the denoised re-
sults of our method produce better visual quality than DDID
and BM3D. For example, DDID and BM3D create noticeable
artifacts in the denoised results (e.g., the nose area of Lena),
while our proposed method produces much more smooth re-
sults. Besides, the optimal parameters obtained by SURE
minimization is nearly the same as that by the true MSE.

(a) Original image
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Fig. 3. Denoised results of the image Lena (at σ = 50) with
(d) DDID, (e) BM3D, and (f) our method. (c) The optimal
parameters by the true MSE and SURE cost. Zoom into PDF
file for a detailed view.

5. CONCLUSIONS

We have proposed a technique for choosing the optimal pa-
rameters, which is dependent on image content and noise
level, for the original DDID by minimizing the SURE cost,
and have derived SURE expressions of DDID. We found the
SURE is a useful metric to estimate and to tune the main
parameters. Experiments verify that the obtained parameters
based on the SURE principle is nearly the optimal parame-
ters in the minimum MSE sense. Furthermore, the proposed
method achieves better performance than the original DDID,
and even obtains comparable results with other state-of-the-
art denoising methods. Note that the parameter selection
of our method can be easily extended to other DDID-based
methods, like progressive image denoising (PID) [14].
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